Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.140
1.
Anal Chem ; 96(17): 6599-6608, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38640514

Antihistamines relieve allergic symptoms by inhibiting the action of histamine. Further understanding of antihistamine transmembrane mechanisms and optimizing the selectivity and real-time monitoring capabilities of drug sensors is necessary. In this study, a micrometer liquid/liquid (L/L) interfacial sensor has served as a biomimetic membrane to investigate the mechanism of interfacial transfer of five antihistamines, i.e., clemastine (CLE), cyproheptadine (CYP), epinastine (EPI), desloratadine (DSL), and cetirizine (CET), and realize the real-time determinations. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to uncover the electrochemical transfer behavior of the five antihistamines at the L/L interface. Additionally, finite element simulations (FEMs) have been employed to reveal the thermodynamics and kinetics of the process. Visualization of antihistamine partitioning in two phases at different pH values can be realized by ion partition diagrams (IPDs). The IPDs also reveal the transfer mechanism at the L/L interface and provide effective lipophilicity at different pH values. Real-time determinations of these antihistamines have been achieved through potentiostatic chronoamperometry (I-t), exhibiting good selectivity with the addition of nine common organic or inorganic compounds in living organisms and revealing the potential for in vivo pharmacokinetics. Besides providing a satisfactory surrogate for studying the transmembrane mechanism of antihistamines, this work also sheds light on micro- and nano L/L interfacial sensors for in vivo analysis of pharmacokinetics at a single-cell or single-organelle level.


Cetirizine , Clemastine , Cyproheptadine , Imidazoles , Loratadine , Loratadine/analogs & derivatives , Loratadine/pharmacology , Loratadine/analysis , Loratadine/chemistry , Cyproheptadine/pharmacology , Cyproheptadine/analogs & derivatives , Cyproheptadine/analysis , Cetirizine/analysis , Cetirizine/pharmacology , Cetirizine/chemistry , Clemastine/analysis , Clemastine/pharmacology , Clemastine/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Histamine Antagonists/analysis , Histamine Antagonists/metabolism , Electrochemical Techniques/methods , Biomimetics , Dibenzazepines/pharmacology , Dibenzazepines/chemistry
2.
Nat Commun ; 15(1): 2493, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509098

The histamine H4 receptor (H4R) plays key role in immune cell function and is a highly valued target for treating allergic and inflammatory diseases. However, structural information of H4R remains elusive. Here, we report four cryo-EM structures of H4R/Gi complexes, with either histamine or synthetic agonists clobenpropit, VUF6884 and clozapine bound. Combined with mutagenesis, ligand binding and functional assays, the structural data reveal a distinct ligand binding mode where D943.32 and a π-π network determine the orientation of the positively charged group of ligands, while E1825.46, located at the opposite end of the ligand binding pocket, plays a key role in regulating receptor activity. The structural insight into H4R ligand binding allows us to identify mutants at E1825.46 for which the agonist clobenpropit acts as an inverse agonist and to correctly predict inverse agonism of a closely related analog with nanomolar potency. Together with the findings regarding receptor activation and Gi engagement, we establish a framework for understanding H4R signaling and provide a rational basis for designing novel antihistamines targeting H4R.


Drug Inverse Agonism , Histamine , Imidazoles , Thiourea/analogs & derivatives , Histamine/metabolism , Receptors, Histamine H4 , Receptors, G-Protein-Coupled/metabolism , Ligands , Receptors, Histamine/metabolism , Histamine Antagonists/pharmacology
3.
Biochem Pharmacol ; 223: 116164, 2024 May.
Article En | MEDLINE | ID: mdl-38531422

Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.


Histamine , Neoplasms , Humans , Histamine/metabolism , Retrospective Studies , Quality of Life , Histamine H2 Antagonists , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Receptors, Histamine H2/genetics , Receptors, Histamine H2/metabolism , Neoplasms/drug therapy , Tumor Microenvironment
4.
Nat Commun ; 15(1): 84, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167898

Histamine receptors are a group of G protein-coupled receptors (GPCRs) that play important roles in various physiological and pathophysiological conditions. Antihistamines that target the histamine H1 receptor (H1R) have been widely used to relieve the symptoms of allergy and inflammation. Here, to uncover the details of the regulation of H1R by the known second-generation antihistamines, thereby providing clues for the rational design of newer antihistamines, we determine the cryo-EM structure of H1R in the apo form and bound to different antihistamines. In addition to the deep hydrophobic cavity, we identify a secondary ligand-binding site in H1R, which potentially may support the introduction of new derivative groups to generate newer antihistamines. Furthermore, these structures show that antihistamines exert inverse regulation by utilizing a shared phenyl group that inserts into the deep cavity and block the movement of the toggle switch residue W4286.48. Together, these results enrich our understanding of GPCR modulation and facilitate the structure-based design of novel antihistamines.


Histamine H1 Antagonists , Histamine , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/chemistry , Histamine H1 Antagonists/metabolism , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Histamine Antagonists/metabolism , Receptors, Histamine
6.
Article En | MEDLINE | ID: mdl-38018180

BACKGROUND: By comparing the histamine impact to the instant response to an injected foreign protein in previously sensitized animals, one might hypothesize that histamine may be involved in this reaction. Through all four of the recognized types of histamine receptors, histamine is also essential for the control of immunological function and acute and chronic allergic inflammation. METHODS: Recent evidence points to anti-IgE antibodies and specific antibodies to cytokines like IL-4 or IL-5 that are associated with allergic inflammation as probable causes of Allergic Rhinitis. The therapeutic advantage of antihistamines is a decrease in allergy symptoms and any other allergy-related symptoms. We research the many diseases and dose forms in which antihistamines are used. Pediatric age groups have never been thoroughly studied for firstgeneration antihistamines. Oral antihistamines are suggested as the first line of therapy for people with mild to severe intermittent Allergic Rhinitis symptoms. RESULTS: Currently, approximately 100 different antihistamine-containing medicines and around 20 different H1-receptor antagonists are available for therapeutic use. Antihistamines of the second generation are more efficient and secure than those of the first generation. We conducted a research on the sedative and non-sedative effects of antihistamines used to treat various diseases. CONCLUSION: The present investigation highlights the use of antihistamines in various diseases at different ages, their sedative and non-sedative effect, and their utility in treating insomnia based on their safety and current use among the patient population, as well as our observation.


Histamine , Rhinitis, Allergic , Animals , Humans , Child , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Histamine H1 Antagonists , Rhinitis, Allergic/drug therapy , Hypnotics and Sedatives , Inflammation/drug therapy
7.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article En | MEDLINE | ID: mdl-37894952

Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-ß1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-ß1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-ß1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Receptors, Histamine H4 , Transforming Growth Factor beta1 , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Interleukin-17/metabolism , Interleukin-9 , Multiple Sclerosis/drug therapy , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Forkhead Transcription Factors/genetics , Mice, Inbred C57BL
8.
Biomolecules ; 13(10)2023 09 24.
Article En | MEDLINE | ID: mdl-37892121

Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.


Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Virus Replication/genetics , DNA, Viral/genetics , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use
9.
J Med Chem ; 66(14): 9607-9621, 2023 07 27.
Article En | MEDLINE | ID: mdl-37409873

Hydrogen sulfide (H2S) is an endogenous gasotransmitter with anti-inflammatory actions that also reduces itching. To test whether a combination of an antihistamine with a H2S donor has improved antipruritic efficacy, bifunctional molecules with antihistamine and H2S-releasing pharmacophores were synthesized and tested in vitro and in vivo. H2S release from the hybrid molecules was evaluated with the methylene blue and lead acetate methods, and H1-blocking activity was assessed by determining tissue factor expression inhibition. All new compounds released H2S in a dose-dependent manner and retained histamine blocking activity. Two compounds with the highest potency were evaluated in vivo for their antipruritic as well as sedative action; they proved to possess higher efficacy in inhibiting histamine-induced pruritus and decreased sedative effects compared to the parent compounds (hydroxyzine and cetirizine), suggesting that they exhibit superior antipruritic action and limited side effects that likely arise from the H2S-releasing moiety.


Antipruritics , Hydrogen Sulfide , Humans , Antipruritics/therapeutic use , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Histamine , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Pruritus/drug therapy , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use
10.
J Mol Graph Model ; 124: 108539, 2023 11.
Article En | MEDLINE | ID: mdl-37331258

Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARß). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.


HIV Infections , Molecular Dynamics Simulation , Humans , Receptors, Histamine H1/genetics , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Alitretinoin , Tretinoin/metabolism , Tretinoin/pharmacology
11.
Amino Acids ; 55(6): 821-833, 2023 Jun.
Article En | MEDLINE | ID: mdl-37171719

Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H1 and H2 antagonists, but not by the H3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H1 and H2 receptors, and the H3 receptor, although it seemed not involved in the histamine effect on these cells. The H4 receptor was not expressed. H1 and H2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations.


Amine Oxidase (Copper-Containing) , Biological Products , Animals , Mice , Histamine/pharmacology , Histamine/metabolism , Cimetidine/pharmacology , Catalase , Hydrogen Peroxide/pharmacology , Histamine Antagonists/pharmacology , Receptors, Histamine/genetics , Histamine H1 Antagonists/pharmacology , Neurons/metabolism , Biological Products/pharmacology
12.
Parasites Hosts Dis ; 61(2): 172-182, 2023 May.
Article En | MEDLINE | ID: mdl-37258264

At the time of host attachment, ticks are very sensitive to histamine, but during rapid blood sucking they paradoxically require histamine. Using a rabbit model, we studied the effects of histamine and antihistamine during attachment and fast-feeding in different life stages of Haemaphysalis longicorns. We examined how they responded to histamine and antihistamine by analyzing the detachment rate, histology of feeding lesions, and post-feeding behavior. A significant difference (P<0.01) was found in the detachment rate between experimental and control treatments throughout the observation period. Ticks exhibited a higher detachment rate (30.1%) at 12 h after histamine application during attachment time and on antihistamine-treated skin (25.4%) at 96 h during fast-feeding. After feeding on histamine-treated rabbits, the fully engorged body weights of larvae and nymphs were 0.7±0.36 mg and 3.5±0.65 mg, respectively. An average increase in body weight of 0.6±0.05 mg and 3.2±0.30 mg was observed for larvae and nymphs compared to the respective control weights. Nymphs and adults engorged after antihistamine treatment had an average body weight of 1.3±0.54 mg and 54±0.81 mg, respectively. An average decrease in body weight was observed in antihistamine-treated H. longicornis compared with control nymphs (3.3±0.42 mg) and adults (174±1.78 mg). Skin biopsies were collected after treatment, and differential histopathological characteristics were found between the treatment and control groups. Tick-infested skin collected from rabbits in the antihistamine-treated group lacked erythrocytes in the feeding pool, indicating that antihistamine impaired tick fast-feeding stage.


Ixodidae , Ticks , Animals , Rabbits , Histamine , Histamine Antagonists/pharmacology , Feeding Behavior , Histamine H1 Antagonists/pharmacology
13.
J Enzyme Inhib Med Chem ; 38(1): 2188147, 2023 Dec.
Article En | MEDLINE | ID: mdl-36912265

Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.


Antipsychotic Agents , Carbonic Anhydrases , Humans , Antipsychotic Agents/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Carbonic Anhydrases/metabolism , Protein Isoforms/metabolism , Phenothiazines , Histamine Antagonists/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Structure-Activity Relationship , Molecular Structure
14.
Cell Rep ; 42(2): 112137, 2023 02 28.
Article En | MEDLINE | ID: mdl-36807142

Commonly used antihistamines and other cationic amphiphilic drugs (CADs) are emerging as putative cancer drugs. Their unique chemical structure enables CADs to accumulate rapidly inside lysosomes, where they increase lysosomal pH, alter lysosomal lipid metabolism, and eventually cause lysosomal membrane permeabilization. Here, we show that CAD-induced rapid elevation in lysosomal pH is caused by a lysosomal H+ efflux that requires P2RX4-mediated lysosomal Ca2+ release and precedes the lysosomal membrane permeabilization. The subsequent cytosolic acidification triggers the dephosphorylation, lysosomal translocation, and inactivation of the oncogenic signal transducer and activator of transcription 3 (STAT3) transcription factor. Moreover, CAD-induced lysosomal H+ efflux sensitizes cancer cells to apoptosis induced by STAT3 inhibition and acts synergistically with STAT3 inhibition in restricting the tumor growth of A549 non-small cell lung carcinoma xenografts. These findings identify lysosomal H+ efflux and STAT3 inhibition as anticancer mechanisms of CADs and reinforce the repurposing of safe and inexpensive CADs as cancer drugs with a drug combination strategy.


Lung Neoplasms , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , Lysosomes/metabolism , Histamine Antagonists/analysis , Histamine Antagonists/metabolism , Histamine Antagonists/pharmacology , Apoptosis , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism
15.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article En | MEDLINE | ID: mdl-36499189

Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.


Histamine , Receptors, Histamine H3 , Female , Animals , Male , Mice , Histamine/metabolism , Serotonin/metabolism , Receptors, Histamine H3/metabolism , Histamine Agonists/pharmacology , Histamine Agonists/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/metabolism , Brain/metabolism
16.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36430790

Growing evidence points to the histamine system as a promising target for the management of neuropathic pain. Preclinical studies reported the efficacy of H3R antagonists in reducing pain hypersensitivity in models of neuropathic pain through an increase of histamine release within the CNS. Recently, a promising efficacy of H4R agonists as anti-neuropathic agents has been postulated. Since H3R and H4R are both localized in neuronal areas devoted to pain processing, the aim of the study is to investigate the role of H4R in the mechanism of anti-hyperalgesic action of the H3R antagonist GSK189254 in the spared nerve injury (SNI) model in mice. Oral (6 mg/kg), intrathecal (6 µg/mouse), or intra locus coeruleus (LC) (10 µg/µL) administration of GSK189254 reversed mechanical and thermal allodynia in the ipsilateral side of SNI mice. This effect was completely prevented by pretreatment with the H4R antagonist JNJ 10191584 (6 µg/mouse i.t.; (10 µg/µL intraLC). Furthermore, GSK189254 was devoid of any anti-hyperalgesic effect in H4R deficient mice, compared with wild type mice. Conversely, pretreatment with JNJ 10191584 was not able to prevent the hypophagic activity of GSK189254. In conclusion, we demonstrated the selective contribution of H4R to the H3R antagonist-induced attenuation of hypernociceptive behavior in SNI mice. These results might help identify innovative therapeutic interventions for neuropathic pain.


Histamine , Neuralgia , Animals , Mice , Neuralgia/drug therapy , Receptors, Histamine , Benzazepines/pharmacology , Hyperalgesia/drug therapy , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use
17.
Nat Commun ; 13(1): 6105, 2022 10 15.
Article En | MEDLINE | ID: mdl-36243875

The histamine receptors belong to the G protein-coupled receptor (GPCR) superfamily, and play important roles in the regulation of histamine and other neurotransmitters in the central nervous system, as potential targets for the treatment of neurologic and psychiatric disorders. Here we report the crystal structure of human histamine receptor H3R bound to an antagonist PF-03654746 at 2.6 Å resolution. Combined with the computational and functional assays, our structure reveals binding modes of the antagonist and allosteric cholesterol. Molecular dynamic simulations and molecular docking of different antihistamines further elucidate the conserved ligand-binding modes. These findings are therefore expected to facilitate the structure-based design of novel antihistamines.


Histamine , Receptors, Histamine , Histamine/metabolism , Histamine Antagonists/pharmacology , Humans , Ligands , Molecular Docking Simulation , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism
18.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Article En | MEDLINE | ID: mdl-36050829

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Alzheimer Disease , Receptors, Histamine H3 , Acetylcholine , Acetylcholinesterase/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Histamine , Histamine Antagonists/pharmacology , Humans , Ligands , Molecular Docking Simulation , Piperazines/chemistry , Piperazines/pharmacology , Receptors, Histamine H3/chemistry , Structure-Activity Relationship , Tryptophan
19.
Free Radic Biol Med ; 192: 98-114, 2022 11 01.
Article En | MEDLINE | ID: mdl-36165929

Doxorubicin (DOX) is widely used in the treatment of various cancers, increasing the great risk of adverse cardiovascular events, while the clinical intervention effect is not ideal. Histamine has been documented to participate in pathophysiological processes of cardiovascular diseases and inflammation-associated carcinogenesis. However, the potential roles of histamine in antitumor-related cardiotoxicity have not been fully elucidated. In this study, cardiomyocytes (hiPSC-CMs, HL-1 cells) and mice were treated with DOX to establish DOX-induced cardiotoxicity (DIC) models. Histidine decarboxylase knockout mice (HDC-/-) mice and histamine 1 receptor (H1R) antagonist were used to explore the effect of histamine/H1R signaling on DIC. Our results demonstrated that histamine deficiency or pharmaceutical inhibition of H1R accelerated myocardial ferroptosis, which is responsible for the aggravated DIC both in vivo and in vitro, while the supplementation of exogenous histamine reversed these changes. Our data revealed that the dysfunction of histamine/H1R signaling repressed the activation of transducer and activator of transcription 3 (STAT3), accompanying with decreased expression of solute carrier family7member11 (SLC7A11), a major modulator of ferroptosis. Conclusively, the disruption of histamine/H1R axis triggered ferroptosis and exacerbated DIC possibly by modulating STAT3-SLC7A11 pathway. Our findings point to a potential therapeutic target for DIC and provide more consideration on the usage of antihistamine drugs.


Ferroptosis , Histamine , Animals , Cardiotoxicity/genetics , Doxorubicin/metabolism , Doxorubicin/toxicity , Ferroptosis/genetics , Histamine/metabolism , Histamine/pharmacology , Histamine Antagonists/metabolism , Histamine Antagonists/pharmacology , Histamine H1 Antagonists/pharmacology , Histidine Decarboxylase/metabolism , Histidine Decarboxylase/pharmacology , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Pharmaceutical Preparations/metabolism
20.
Bioorg Chem ; 128: 106024, 2022 11.
Article En | MEDLINE | ID: mdl-35901544

Zika virus (ZIKV) infection can lead to severe neurological disorders and fetal defects, which has become a public health problem worldwide. However, effective clinical treatment for ZIKV infection was still arduous. Antihistamines are attractive candidates for drug repurposing due to their low price and widespread availability. Here we screened FDA-approved antihistamine drugs to obtain anti-ZIKV candidate compounds and identified mebhydrolin napadisylate (MHL) that exhibits the potent inhibition of ZIKV infection in various cell lines in a histamine H1 receptor-independent manner. Mechanistic studies suggest that MHL acts as a ZIKV NS5 RNA-dependent RNA polymerase (RdRp) inhibitor, supported by a structure-activity relationship (SAR) analysis showing the correlation between the inhibitory effect upon viral RNA synthesis and ZIKV infectivity. Furthermore, MHL was shown to bind ZIKV NS5 RdRp in vitro and predicted to interact with key residues at the active site of ZIKV NS5 RdRp by molecular docking analysis. Our data together suggest that MHL suppresses ZIKV infection through the inhibition of ZIKV NS5 RdRp activity. This study highlights that MHL might be a promising clinical anti-ZIKV therapeutic.


Zika Virus Infection , Zika Virus , Antiviral Agents/chemistry , Carbolines , Drug Repositioning , Histamine Antagonists/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/therapeutic use , Humans , Molecular Docking Simulation , RNA-Dependent RNA Polymerase , Zika Virus Infection/drug therapy
...